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A Regression Design Approach to Optimal and

Robust Spacing Selection

By R. L. Eubank

Short title: Spacing Selection

Summary. ': The problem of location and/or scale parameter estimation
using the asymptotically best linear unbiased estimator based on sample
quantiles is considered. The problem of optimal spacing selection for
these estimators is shown to be equivalent to the problem of regression
% design for time series with Brownian motion or Brownian bridge covariance
| structures and a particular variable knot spline approximation problem.
This equivalence is employed, in conjunction with a regression framework,
to investigate the asymptotic properties of certain spacing selection
schemes. In particular, an asymptotic alternative is developed to a

robust estimation procedure suggested by Chan and Rhodin (1980).3

1. Introduction. In a location and scale parameter model it

is assumed that a random sample X ,...,XN is obtained from a distribu-

1
tion of the form

F(x) = F (=E)
where Fo is a known distributional form and u and o are, respectively, a
location and scale parameter. Usually u and/or ¢ are unknown and must
be estimated from the data. In this paper, the properties of the asymp-
totically best linear unbiased estimators (ABLUE's) of u and o based

on n < N sample quantiles will be investigated.

ek




The ABLUE is an easily computed estimator which derives from the
asymptotic distribution of the sample quantiles and was first suggested
by Mosteller (1946). Further properties and computational formulas
were latter derived by Ogawa (1951). 1In particular, Ogawa obtained
explicit expressions for the asymptotic relative efficiency (ARE) of
the ABLUE with respect to the Crame}—Rao lower variance bound for
unbiased parameter estimation. The ABLUE has also received attention
in the context of robust estimation due to the work of Chan and
Rhodin (1980).

Define the sample quantile function, 5, by

J-;l <cuc< 4, §=1,...,N, (1.1)

(-2(u)=x 2 N

(3’

where X denotes the jth sample order statistic. Then, for any set

(3)
of real numbers 0 < uy < ... < u < 1, the ABLUE's of u and o will have
the form Z?=lb(ui)é(ui)(c.f. Ogawa (1951) or Eubank (1979) for explicit
expressions for the b(ui) in the various estimation situations). Since
the ABLUE uses a subsample of n < N of the sample quantiles or order

statistics, the quantiles which are utilized in the estimator, or equi-
valently their spacing, ul,...,un, must be chosen appropriately. The

problem of optimally selecting the ui, i=1,...,n, has classically been 1

termed the optimal spacing problem and has been addressed by Bloch (1966),

Balmer, Boulton and Sack (1974), Chan (1970), Chernoff (1971), Eisenberger
and Posner (1965), Gupta and Gnanadesikan (1966), Hassanein (1968, 1969%a,
1969, 1971, 1972, 1977), Kulldorf (1963), Kulldorf and v;nnman (1973),
Rhodin (1976), Sarhan and Greenberg (1958, 1962) and s;rndal (1962, 1964).

The usual approach to the optimal spacing problem has been to attempt

to find a spacing which corresponds to the maximum value for one of the

: PaNaT,




ARE expressions given by Ogawa. Whereas this is usually a straight-
forward, albeit tedious, numerical problem in the event of a single
unknown parameter, the case when both parameters are unknown usually
proves to be both analytically as well as numerically intractable.

This latter fact has led to the use of "suboptimal" spacing selection
schemes such as the selection of a spacing which maximizes the sum of
the two ARE's of the estimators or a spacing which minimizes the sum of
the estimators' variances. This type of approach has been employed by
Eisenberger and Posner (1965) and Hassanein (1969a, 1969b, 1977).

In this paper the asymptotic (as n + «) properties of optimal as
well as suboptimal spacing selection schemes are derived and then
utilized to obtain an analytic approach to robust estimation problems
such as that considered by Chan and Rhodin (1980). These results are
obtained using the regression analysis framework developed in
Parzen (1979). When viewed in a regression setting, so called suboptimal
spacings which, for instance, minimize the sum of the variances are seen
to be well motivated from the perspective of regression design as well as
for other reasons such as computational simplicity.

The asymptotic implication of several spacing selection criteria
are considered in Section 3. The regression framework from which these
results derive is presented in Section 2 where it is shown that the
problem of optimal spacing selection can be viewed as both an optimal
regression design problem and a variakle knot spline approximation
problem for splines of order 1. This fact permits the derivation of
the asymptotic results in Section 3. Finally, in Section 4, the results
of Section 3 are utilized to develop a general approach to a problem

of robust ABLUE construction.




2. Regression design, spacing selection, and variable knot spline

approximation. The objective of this section is to show the equivalence

of three problems: the optimal spacing problem, the problem of regression
design in the presence of errors with Brownian bridge (or Brownian motion)
covariance structure, and the problem of finding the best L2[0,1] approxi-
mation of a particular function by piecewise constants with free break-
points. First, however, a few preliminaries are required.

Now, and in subsequent discussions, it will be assumed that F. is

0
absolutely continuous with associated density fo: = F6 (where: = means
"is defined as"). The quantile function corresponding to Fo is Qo(u):= i

Fgl(u): = inf{x]FO(x) > u} and the density-quantile function is defined
X

as 4 (w): = £,(Q (w), 0 < u<l.

Parzen (1979) has shown that for large N the problem of location
and/or scale parameter estimation can be considered as a continuous

parameter time series regression problem through use of the model
= 2.
do(u)Q(u) udo(u) + ado(u)Qo(u) + oBB(u) , ue [0,1] , (2.1)

where og = o/vN and B(+) is a Brownian bridge process, i.e., B(+*) is a

zero mean normal process with covariance kernel

R(ul,uz) =u ~uu, O0<u

) R ) Lu

<1, (2.2)

1 2

Consequently, under the regularity condition that both d0 and the 7
product of d0 and QO' dO.QO' are in the reproducing kernel Hilbert

space (RKHS) generated by R, the techniques developed by Parzen (196la,
1961b) may be utilized to construct linear estimators of u and ¢ which

are based on the entire set of N sample guantiles. Denote these estimators

" - . , , Lo 2 -1
by u and 0. Their corresponding variance-covariance matrix is aBA ,where

A is the usual intrinsic accuracy matrix associated with the location and

scale parameter model (2.1). ﬁ




The problem of optimal regression design selection for model (2.1)

is also, clearly, a problem of optimal gquantile selection. It is, in
fact, the optimal spacing problem. To see this define the set of all

possible n-point designs for model (2.1) by

D : = {(“1""'un)|° <u; €<y, < ... <u < 1} .

Given a particular design,U = {ul,...,un} € Dn,the observation set
{do(ul)é(ul),...,do(un)é(un)} may be utilized, as a result of model

(2.1), to construct estimators, uw(U) and o(U), for u and ¢ through

the use of generalized least squares. Denote the variance-~covariance
matrix of these estimators by G;A(U)-l. It has been noted by Eubank (1981)
that u(U) and o(U) coincide with the ABLUE's for u and ¢ based on the

1 coincides with their asymptotic variance-

spacing U and that G;A(U)-
covariance matrix. Since the ARE expression for simultaneous parameter
estimation given by Ogawa (1951) is

ARE (1 (0) ,0() = |aw|/[a] ,
where I-( denotes the determinant function, it is now apparent that the
optimal spacing problem is identical with the nroblem of D-optimal design
selection for model (2.1). The criterion of minimizing the sum of the
estimators' variances is now recognized as A-optimal design selection
since
ogtrA(U)-l =Var(u(U)) + Var(o(u)),

where tr denotes the matrix trace. Similarly, maximizing the sum of

the ARE's is equivalent to maximizing tr[A(U)M], where M-l:=diag(a )

11°%12

and a, i=1,2, denote the diagonal elements of A.

ii’
In the case of, for instance, D-optimal designs for model (2.1) it

suffices to maximize |A(U)| over U ¢ D - It should be noted that such a

design is also D-optimal for the regression model




Y(t) = Bldo(t) + Bzdo(t)Qo(t) + X(t), tel0,1], (2.3)

where X(°*) is a Brownian bridge process. Similar remarks hold for other
optimality criteria and for the case of only one unknown parameter. Thus,
if u(o) is known an optimal spacing for estimating o(u) is also an optimal
design for the estimation of 82(81) when 81(82) is known.

The problem of optimal design (and hence optimal spacing)
selection may be analyzed using the RKHS approach developed by Sacks
and Ylvisaker (1966, 1968). Therefore, let H(R) denote the RKHS
generated by R in (2.2) with associated norm denoted by |[~‘[R. It
can be shown (c.f. Parzen (1979)) that

H(R) = {£|£(0)=£(1)=0, £'er’[0,1]} .

The inner product of f,g € H(R) is

<f,g>_ = flf'(x)q‘(x)dx = <f',g'> 2 , (2.4)
R 0 L

where <-,->L2 denotes the usual L2[0,1] inner product. It now follows
from the work of Sacks and Ylvisaker (1968) that the matrices A and A(U)

associated with the estimators (u,c)t and (u(U), o(U))t respectively,

are given by

2
lldo'lR <d0'd0‘QO>R (2.5)
A= )
451957 [ag-,l 15
and
2
[IR a |] <Rd ,R4 Q> (2.6)
A(U) = vollr U 0’ U 0 <0 R

2
Ry Ryds g 1Ryl g
where RU denotes the H(R) orthogonal projector for the H(R) subspace

R,'= span(R(-,ui)lui e U} .

o Y




Equations (2.4) - (2.6) have important implications for the
optimal spacing problem. To illustrate this point consider the case
of location parameter estimation when ¢ is assumed known. For a

-1 . .
particular spacing, U, since ch(U) is the asymptotic variance-
covariance matrix of the ABLUE it follows that

2 2
arE (u(W)= | [R a [l:/11a 113
-2 2 2
gl 12204, 12 - 114, - Ry, 12
as a result of the Pythagorean theorem. Thus, maximizing ARE (u(U))
. . . e e 2
with respect to U is equivalent to minimizing ||d0-RUdO||R over all

U e Dn' However, from (2.4),

2 ‘. 112
lla,-Rya, il = llag-Ran'|l2

N ) v 2
| ldo-RUdol |L2 '
where Ra is the L2[0,l] orthogonal projection operator for the (L2)
subspace

aR(u,ui)

3 u., € U} . (2.7)
u i

Rﬁ = span{
Reference to (2.2) verifies that Ré consists of splines of order 1
(piecewise constants)with knots or breakpoints at the elements of U.
Therefore, the optimal spacing problem is now seen to coincide with the
following variable knot spline approximation problem for dé: find U*eDn

such that

||d6 - Rﬁ*dalle = inf ||d6 - Rﬁdélle . (2.8)
UeD
n

! To ascertain how problem (2.8) relates to the usual type of variable
knot piecewise constant approximation problem first note that for any

UsDn the elements in Rﬁ are orthogonal to the unit function, 1, in L2[0,1].

Thus, the set of all splines of order 1 with knots at U, SU' may be




'!.'-...--u-----III-l-lll--l!I!ullllllIll'llllll!lI"""""”"‘ll"-""‘:f

written

Sy = span{lle Ry -

As do € H(R) requires that d0(0)=d0(1)=0 it follows that dé L span {1},

2 .
s _Peq : vt
as well. Therefore, do RUdO L s (in L") and, consequently,RUdO is

U
the best L2[0,1] approximation to db from SU. Now, let U* be defined as

in (2.8) and let SU denote the L2[0,l] orthogonal projector for SU'
v s . s
Then RU*dO satisfies

[ 1ag-Ryudpll 2 = ézflldb-sudélle . (2.9)

Equation (2.9) has the consequence that, for location parameter

estimation, the optimal spacing problem is equivalent to finding the

. . . . : 2
best set of knots for piecewise constant approximation of dé in L7{0,1].
an analogous result holds for scale parameter estimation.
The preceding discussions are now summaried by way of the following

theorem.

Theorem 1. If do(do-QO) is in H(R) then the following three problems
are equivalent:
(i) Optimal spacing selection for the ABLUE of u(c) when o(u)
is known.
{(ii) Minimum variance design selection for 81(82) when 82(31) is
known in model (2.3).

(iii) optimal knot selection for the best L2[0,1] approximation of

L] . 1 3 .
do([d0 QO] ) by splines of order 1

It is of interest to note the importance of Theorem 1 with regard

to problems (ii) and (iii). From a regression design perspective the

values of optimal spacings provided in references [1,3,4,5,10-14,17,18,25,28,29]

may now be viewed as optimal designs for a regression problem with regression 1




function do(do'Qo) and Brownian bridge covariance structure (these are
also optimal designs for models having the Brownian motion covariance
kernel, min(s,t), if a design point at 1 is appended) whereas from an
approximation theory point of view they may be considered as optimal

knot locations for piecewise constant approximation of dé([dO-Qo]'). The

i optimal spacing literature, therefore, provides a readily available

source for the optimal designs (in the context of model (2.3)) and optimal

knots which correspond to a rich set of functions. For this reason, it

should be of considerable value, for comparison or other purposes, when

alternative design or knot selection schemes are being considered.

3. Asymptotic results. In this section the asymptotic properties of

certain spacing selection schemes will be analyzed. It will be seen
that, in certain cases, it is possible to characterize the asymptotic
behaviour of spacing sequences with regards to variocus criteria for
measuring the size of A(U). In addition, spacing sequences that are
asymptotically optimal (in a sense to be defined) for the optimality
criteria |[A(W ]|, V(u(U) + V(o(U) and ARE (u(U)) + ARE(0(U)) will be
provided. The elements of such sequences can be utilized to provide
an approximate, easily computed, solution to the problems of optimal

and suboptimal spacing selection.

: For a nonnegative matrix B, let ¢ (B) denote either IBI or trBM

where M is a specified nonnegative matrix. Then the performance of a

, o . £
spacing sequence, (Un}n=l Un € Dn' can be determined from a regret

point of view by examining the asymptotic behaviour of w(A)-w(A(Un))

or w(A(UA)-l) - W(A-l). A sequence satisfying




10
lim[inf w(A(U)'l)—¢(A'1)][w(A(un)“l)—w(A"l)]'l -1 (3.1)
n-+e Ue:Dn

is termed asymptotically yl-optimum whereas one satisfying

lim[y(A) - sup w(A(U)))[yp(A)-w(A(U )]t = 1 (3.2)
e UeD_ n

is said to be asymptotically ¥2-optimum (this terminology is due to Sacks

and Ylvisaker (1968)). When only one parameter is unknown both (3.1) and
(3.2) may be stated in terms of ARE's. If, for instance, only u is
unknown both (3.1) and (3.2) are equivalent to

. -1
%ﬁg[l- sup ARE(U(U»][l—ARE(u(Un))] =1. (3.3)
UeDy,

As in Eubank (1981), density functions will be utilized to generate
spacing sequences. Let k be a continuous density on {0,1] with associated

quantile function «. Then k, or equivalently «, defines a spacing sequence

), ..ok ===)}. This sequence is called

whose n-th element is Un={K( vy

n+l

the reqular sequence (RS) generated by k or x and this relationship is

indicated by {U,} is RS(k). Since x, or at least some of its values, must

be known in order to obtain the Un most of the results which follow will be
stated in terms of « rather than k (to translate conditions on x to condi-
tions on k it is only necessary to employ the change of variable x = x(u}
and the relation «'(u) = 1/k(k(u))). In the context of knot (design)

selection, such k's are frequently termed knot density functions and « is

referred to as a knot guantile function.

W2'2

Let (a,b) denote the Sobolev space of functions on {(a,b)

. . . . : : 2 .
possessing a second distribution derivative in L"[a,b] and define the

space wzéZ(O,l) as the set ofall funections in wz'z(a,b) if 0 <a <b < 1.

1

The next theorem details the asymptotic behaviour of spacing sequences for
the trace and determinant criteria. The primary emphasis is upon spacings
generated by a knot or spacing quantile function. In particular, knot

density functions which generate asymptotically optimal spacing seguences

i are provided.
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Theorem 2. Let ¥ € C[0,1) be a knot quantile function with a bounded
plecewise continuous derivative «' having the property that the set of
all points where x' is zero or discontinuous has content zero and has

neither 0 or 1 as accumulation points. Using g to denote either d or ;

d Q , it is assumed that gew (0 1) NH(R) and that for each function i
there is a corresponding § > 0 and a monotone function h on I=(0,8]U [1-6,1] 3
’ which satisfies b

h(x) > |g"(x)| for all x ¢ 1, (3.4)
and

fInte ) |2t (03ax < = . (3.5)
I

Under these hypotheses the following results hold.

(i) Let ¢(B) = trBM and define

L - " t
$(u): = (do(u).(d0 QO) (u)) . (3.6)
Then, if {U_} is RS(x)
n 1
lim n’{traM - trA(Un)M} =-33—f[ (K(x))tM¢(K(x))]K'(x)3dx. (3.7)
0

If do and do-Qo are in Cz[o,l](\H(R) then the RS generated by the density

1/3

1
k*(x) = [¢(x)tM¢(x)] {f [¢(s)tM¢(s)]1/365} (3.8)
0

is asymptotically Y2-optimum. In addition, if M is positive, the RS
generated by the density

1
k*(x) = [6(x) %A Imn” ¢(x)]1/3///{f o) (5133 (39
0

is asymptotically yl-optimum.

(ii) Let ¢(8B) = |B|. Then, if {u } is RS(k)

1

1z Mot B otk o) Tk (0 ax. (3.10)

lim n21A|{1~ARE(u(Un) ,c(Un))} =
nreo

If both do and do-QO are in C2[0,17\H(R) then a RS which is asymptotically

¥l and Y2 optimum is generated by the density

1
K* (x) = [¢(x)tA_l¢(x)11/3///{f[¢(s) 2 1lo ()1 3as) . (3.11)
0

§
I
'
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Proof. The asymptotic optimality of the sequences generated by (3.8),
(3.9), and (3.11) is an immediate consequence of results given in Sacks
and Ylvisaker (1968). To obtain (3.7) and (3.10) first note that under
the present assumptions the work of Pence and Smith (1981) (or Barrow and
Smith (1978) ;nder stronger conditions on k) in conjunction with Theorem 1

has the consequence that

1
lim nzllg-—RU gll? = I [l 1% 0 %ax, (3.12)
N n R o}

where g has been utilized to denote either dQ or do-QO. Equation (3.12),
along with the technique utilized in proving Theorems 4.1 and 4.2 in Sacks
and Ylvisaker (1968), then gives the desired results.

Theorem 2 provides the necessary tools for analyzing the asymptotic

behaviour of the various spacing selection schemes. Using (3.11) in (3.10)
and the asymptotic optimality of the corresponding RS it follows that for

spacings obtained by maximizing Ogawa's ARE expression
1/3

lim n2|A|{1—sup ARE(u(U0),c())} = %3{f1[¢(x)tA-l¢(x)] dx}3 (3.13)
o]

e UeD
n

This is to be compared to the approach of maximizing the sum of the ARE's
utilized by Hassanein (1977). 1In this latter case, using (3.7) and (3.8)
. ~1 . 2 2 .
with M ~ = dlag(,,dolfR, ,Ido QOIIR) one obtains
27J1/3\3
1] - ]
do(x) 2 (d0 Qo) (x)

lim n’{trAM-sup trA(u)M} ---,t—-f —) +{[———) Jax }.(3.14)
oo UeD, of\Ha,llg Hay-g,l 15

Finally, if the criteria is minimization of the sum of variances, as in
Hassanein (1969a, 1969b) and Eisenberger and Posner (1965), then from
(3.9) and Theorem 4.5 of Sacks and Ylvisaker (1968) with M = I, the

+~imiting behaviour is given by

1/3

1
Lim n?{ing era( t-tra M) = Iotf (o 00 TR0 00 1M 2ax) (3.15)
0

b tpad UeD
n

Thus, for symmetric distributions, where A is a diagonal matrix, spacings




i .
v r—————

'!lll"""""""""""""""""""'llllllllllIlllll"""""“""'lllll"""""‘—
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which are D-optimal or maximize ARE(u(U)) + ARE(0(U)) will have the same
asymptotic behaviour. However, the asymptotic properties of these
spacings will, in general, differ from that of spacings obtained by
minimizing the sum of the variances, even for symmetric distribution.
All three spacing selection schemes will behave similarly for distri-
butions such as the Cauchy where A is a constant multiple of the identity.
In fact, for the Cauchy distribution asymptotically optimal spacing
sequences for minimization of IA(U)I, v(u(u)) + Vv(c(U)), and ARE(u(U))
+ ARE(0(U)) are all generated by the same knot quantile function, k*(x)=x.
The density (3.11) was also derived for use in spacing selection by
Sarndal (1962) using variational methods and under more stringent conditions.
For an alternative approach see Eubank (198l).

4. Robust estimation. Chan and Rhodin (1980) have proposed a

technique which utilizes the ABLUE to accomplish the robust estimation

of the location parameter of a symmetric distribution. They assume that
the true underlying distribution is a member of the Tukey's lambda family
or is a normal, double exponential or Cauchy distribution (or, at leasth
is well modelled by one or more of these laws). In addition, they assume
that FO belongs to a known finite subset, L, of these families of distri-
butions. Let ARE(u(UﬂG) denote the ARE corresponding to the spacing U
when estimation is to be accomplished under the assumption that the data
has the distribution G € L. Then, to estimate u, Chan and Rhodin take

as their guess for Fo any distribution F* ¢ L which satisfies

min ARE(u(U(F*)) |G) = max min ARE(u(U(F))|G), (4.1)
Gel Fel Gel

where U(F) is an optimal spacing for the distribution F. This approach




’I""’“““ - ‘‘''"'"''""'"'"'"'""""'"'-''lllllllllllIIlllll'''""'""""llllIllllllIll-------------.----------—---...1
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requires that the function ARE(u(U(F))|G) must be tabulated for all pairwise
combinations of laws in L and for each value of n that is to be considered
(Chan and Rhodin provide tables for n = 2(1)5).

From the results in Section 2 it follows than the procedure utilized

by Chan and Rhodin (1980) is equivalent to: select an F* ¢ L such that

2 2
max ||a_-R a_ || = min max ||a - alls , (4.2)
el G uEm 6! 'R T L o G RU(F) c!'r

where dG is the density-quantile function for Gel. This suggests the
following asymptotic approach to robust spacing selection. Under condi-
tions such as those in Theorem 3.1, define for each Fel the knot density
function

_ oawier 1273 0 ¢ n 2/3 (4.3)
kp(x) = {an(x)} /g {an(s)}as

with corresponding knot quantile function denoted x_. If do € C2[0,l]

F

the density kF generates a sequence of asymptotically optimal (in the
sense of (3.3)) spacings, {Un(F)}' for location parameter estimation when
F is the true parent distribution of the data {(c.f. Eubank (1981)).

Then, from (3.12)

2 1 2 3 -2
lagRy (ydcl Iz = 52 [ a8tk (x) 1%k () ax + o(n ). (4.4)
n 4]

Hence, an asymptotic version of (4.1) is: select F* ¢ L so that

1 1
2 3 . 2 3
max j [d"(x_,{x))]1%!, (%) "dx = min max [a®(k_(x))] k! (x) "dx. (4.5)
Gel o G F* EFx Fel Gel fo G F F

To determine F* for a given L one must evaluate (usually by numerical
1
techniques) the function f[dE(KF(x))]zx;(x)3dx for all pairwise combina-
o

tions of laws in L. However, in contrast to the procedure suggested by

Chan and Rhodin, the resulting tabulation suffices for all values of
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n. An estimator of u based on n quantiles is then provided through use

of the spacing Un(F*) and the corresponding coefficients for F* that

may be obtained from Ogawa (1951).

The solution (4.5) is applicable to any (finite) set of laws L,
whether symmetric or not, provided conditions such as those in Theorem 2
are satisfied by the elements of L. A scale parameter version of (4.5)
can be obtained by using d+Q rather than 4, in (4.3) and (4.5). For
the simultaneous estimation of u and o either (3.6) and (3.8) or (3.10)
and (3.11) can be utilized to construct an analogous criterion for

robust spacing selection.
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